Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834236

RESUMO

The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.


Assuntos
Células Epiteliais , Doenças Respiratórias , Humanos , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Doenças Respiratórias/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834382

RESUMO

Respiratory diseases have a major impact on global health. The airway epithelium, which acts as a frontline defence, is one of the most common targets for inhaled allergens, irritants, or micro-organisms to enter the respiratory system. In the tissue engineering field, biomaterials play a crucial role. Due to the continuing high impact of respiratory diseases on society and the emergence of new respiratory viruses, in vitro airway epithelial models with high microphysiological similarities that are also easily adjustable to replicate disease models are urgently needed to better understand those diseases. Thus, the development of biomaterial scaffolds for the airway epithelium is important due to their function as a cell-support device in which cells are seeded in vitro and then are encouraged to lay down a matrix to form the foundations of a tissue for transplantation. Studies conducted in in vitro models are necessary because they accelerate the development of new treatments. Moreover, in comparatively controlled conditions, in vitro models allow for the stimulation of complex interactions between cells, scaffolds, and growth factors. Based on recent studies, the biomaterial scaffolds that have been tested in in vitro models appear to be viable options for repairing the airway epithelium and avoiding any complications. This review discusses the role of biomaterial scaffolds in in vitro airway epithelium models. The effects of scaffold, physicochemical, and mechanical properties in recent studies were also discussed.


Assuntos
Materiais Biocompatíveis , Doenças Respiratórias , Humanos , Materiais Biocompatíveis/química , Células Epiteliais/metabolismo , Epitélio , Sistema Respiratório , Engenharia Tecidual , Doenças Respiratórias/metabolismo , Tecidos Suporte/química
3.
Cell Stem Cell ; 30(1): 20-37.e9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493780

RESUMO

Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease.


Assuntos
Diferenciação Celular , Pulmão , Organoides , Humanos , Recém-Nascido , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Pulmão/embriologia , Doenças Respiratórias/embriologia , Doenças Respiratórias/metabolismo
4.
Stem Cell Res Ther ; 13(1): 194, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550188

RESUMO

Exosomes are extracellular vesicles found in various tissues, blood circulation, and tissue fluids, secreted into the extracellular environment by fusing a multivesicular body with a plasma membrane. Various cell types release these vesicles to contribute to many cellular functions, including intercellular communication, cell proliferation, differentiation, angiogenesis, response to stress, and immune system signaling. These natural nanoparticles have therapeutic effects in various diseases and exhibit a behavior similar to the cell from which they originated. In the meantime, exosomes derived from mesenchymal stem cells have attracted the attention of many researchers and physicians due to their unique ability to modulate the immune system, repair tissue and reduce inflammation. Numerous clinical and preclinical studies have examined the effect of MSC-derived exosomes in various diseases, and their results have been published in prestigious journals. This review article discusses the biogenesis and sources of exosomes, MSC-derived exosomes, the use of these exosomes in regenerative medicine, and treatments based on exosomes derived from stem cells in respiratory diseases.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Respiratórias , Diferenciação Celular , Exossomos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa/métodos , Doenças Respiratórias/metabolismo , Doenças Respiratórias/terapia
5.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35044462

RESUMO

Group 2 innate lymphoid cells (ILC2s) have emerged as critical mediators in driving allergic airway inflammation. Here, we identified angiotensin (Ang) II as a positive regulator of ILC2s. ILC2s expressed higher levels of the Ang II receptor AT1a, and colocalized with lung epithelial cells expressing angiotensinogen. Administration of Ang II significantly enhanced ILC2 responses both in vivo and in vitro, which were almost completely abrogated in AT1a-deficient mice. Deletion of AT1a or pharmacological inhibition of the Ang II-AT1 axis resulted in a remarkable remission of airway inflammation. The regulation of ILC2s by Ang II was cell intrinsic and dependent on interleukin (IL)-33, and was associated with marked changes in transcriptional profiling and up-regulation of ERK1/2 phosphorylation. Furthermore, higher levels of plasma Ang II correlated positively with the abundance of circulating ILC2s as well as disease severity in asthmatic patients. These observations reveal a critical role for Ang II in regulating ILC2 responses and airway inflammation.


Assuntos
Angiotensina II/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Doenças Respiratórias/etiologia , Doenças Respiratórias/metabolismo , Animais , Biomarcadores , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Inflamação , Interleucina-33/metabolismo , Camundongos , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Doenças Respiratórias/patologia
6.
Front Immunol ; 13: 1110774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685535

RESUMO

Macrophages play an essential role in maintaining the normal function of the innate and adaptive immune responses during host defence. Macrophages acquire diverse functional phenotypes in response to various microenvironmental stimuli, and are mainly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophage polarization participates in the inflammatory, fibrotic, and oncogenic processes of diverse respiratory diseases by changing phenotype and function. In recent decades, with the advent of broad-range profiling methods such as microarrays and next-generation sequencing, the discovery of RNA transcripts that do not encode proteins termed "noncoding RNAs (ncRNAs)" has become more easily accessible. As one major member of the regulatory ncRNA family, long noncoding RNAs (lncRNAs, transcripts >200 nucleotides) participate in multiple pathophysiological processes, including cell proliferation, differentiation, and apoptosis, and vary with different stimulants and cell types. Emerging evidence suggests that lncRNAs account for the regulation of macrophage polarization and subsequent effects on respiratory diseases. In this review, we summarize the current published literature from the PubMed database concerning lncRNAs relevant to macrophage polarization and the underlying molecular mechanisms during the occurrence and development of respiratory diseases. These differentially expressed lncRNAs are expected to be biomarkers and targets for the therapeutic regulation of macrophage polarization during disease development.


Assuntos
RNA Longo não Codificante , Transtornos Respiratórios , Doenças Respiratórias , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos , Biomarcadores/metabolismo , Diferenciação Celular/genética , Doenças Respiratórias/genética , Doenças Respiratórias/metabolismo
7.
Nat Commun ; 12(1): 7179, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893592

RESUMO

During lung fibrosis, the epithelium induces signaling to underlying mesenchyme to generate excess myofibroblasts and extracellular matrix; herein, we focus on signaling in the mesenchyme. Our studies indicate that platelet-derived growth factor receptor (PDGFR)-ß+ cells are the predominant source of myofibroblasts and Kruppel-like factor (KLF) 4 is upregulated in PDGFR-ß+ cells, inducing TGFß pathway signaling and fibrosis. In fibrotic lung patches, KLF4 is down-regulated, suggesting KLF4 levels decrease as PDGFR-ß+ cells transition into myofibroblasts. In contrast to PDGFR-ß+ cells, KLF4 reduction in α-smooth muscle actin (SMA)+ cells non-cell autonomously exacerbates lung fibrosis by inducing macrophage accumulation and pro-fibrotic effects of PDGFR-ß+ cells via a Forkhead box M1 to C-C chemokine ligand 2-receptor 2 pathway. Taken together, in the context of lung fibrosis, our results indicate that KLF4 plays opposing roles in PDGFR-ß+ cells and SMA+ cells and highlight the importance of further studies of interactions between distinct mesenchymal cell types.


Assuntos
Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Doenças Respiratórias/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
8.
Sci Rep ; 11(1): 19803, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611262

RESUMO

Mechanically ventilated (MV) patients may present airway inflammation and elevated secretion production. However, it is unknown whether cell and/or protein counts in bronchial samples may be useful to evaluate their clinical condition. Our aim was to standardize sampling and propose a new mechanical mucus dissolution in Tracheal-Bronchial secretions. In all patients, bronchial lining fluid aspiration (BLF), Bronchoalveolar lavage (BAL) and Bronchial Washings (BW40, BW5) were performed, while visible bronchial secretions were obtained via bronchoscopy (VBS) and blinded, via a common catheter for tracheobronchial aspiration (AC). Mucus was mechanically or DTT dissolved and cell number was count. Protein, albumin and TNF-α levels were measured, in mucus dissolved samples from control and MV patients. Cell number and protein levels were elevated in mucus dissolved compared to non-dissolved, or DTT dissolved. Cell number and TNF-α levels were elevated in MV patients compared to controls, while protein levels were lower in MV patients. Differences in cell and protein levels were observed in samples acquired using different sampling technics. Therefore, mechanical mucus dissolution provides a proper sample for evaluation, and the sampling technic used can influence the sample's characteristics.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Inflamação/diagnóstico , Inflamação/etiologia , Respiração Artificial/métodos , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/etiologia , Idoso , Broncoscopia , Proteína C-Reativa , Estudos de Casos e Controles , Contagem de Células , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Muco/metabolismo , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia
9.
Biomed Pharmacother ; 144: 112270, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678722

RESUMO

Exosomes are nano-sized vesicles released by almost all cell types, with a central role as mediators of intercellular communication. In addition to physiological conditions, these extracellular vesicles seem to play a pivotal role in inflammatory processes. This assumption offers the opportunity to study exosomes as promising biomarkers and therapeutic tools for chronic respiratory disorders. Indeed, although it is well-known that at the basis of conditions like asthma, chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency and idiopathic pulmonary fibrosis there is a dysregulated inflammatory process, an unequivocal correlation between different phenotypes and their pathophysiological mechanisms has not been established yet. In this review, we report and discuss some of the most significant studies on exosomes from body fluids of subjects affected by airway diseases. Furthermore, the most widespread techniques for exosome isolation and characterization are described. Further studies are needed to answer the unresolved questions about the functional link between exosomes and chronic respiratory diseases.


Assuntos
Exossomos/metabolismo , Mediadores da Inflamação/metabolismo , Sistema Respiratório/metabolismo , Doenças Respiratórias/metabolismo , Animais , Biomarcadores/metabolismo , Exossomos/genética , Exossomos/transplante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Valor Preditivo dos Testes , Prognóstico , Sistema Respiratório/fisiopatologia , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/terapia , Transdução de Sinais
10.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648805

RESUMO

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Assuntos
Canabinoides/farmacologia , Endocanabinoides/metabolismo , Doenças Respiratórias/tratamento farmacológico , Animais , Canabinoides/administração & dosagem , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Biológicos , Receptores de Canabinoides/imunologia , Receptores de Canabinoides/metabolismo , Doenças Respiratórias/metabolismo , Tratamento Farmacológico da COVID-19
11.
Mayo Clin Proc ; 96(10): 2694-2707, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34538424

RESUMO

Eosinophils play a homeostatic role in the body's immune responses. These cells are involved in combating some parasitic, bacterial, and viral infections and certain cancers and have pathologic roles in diseases including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic gastrointestinal disorders, and hypereosinophilic syndromes. Treatment of eosinophilic diseases has traditionally been through nonspecific eosinophil attenuation by use of glucocorticoids. However, several novel biologic therapies targeting eosinophil maturation factors, such as interleukin (IL)-5 and the IL-5 receptor or IL-4/IL-13, have recently been approved for clinical use. Despite the success of biologic therapies, some patients with eosinophilic inflammatory disease may not achieve adequate symptom control, underlining the need to further investigate the contribution of patient characteristics, such as comorbidities and other processes, in driving ongoing disease activity. New research has shown that eosinophils are also involved in several homeostatic processes, including metabolism, tissue remodeling and development, neuronal regulation, epithelial and microbiome regulation, and immunoregulation, indicating that these cells may play a crucial role in metabolic regulation and organ function in healthy humans. Consequently, further investigation is needed into the homeostatic roles of eosinophils and eosinophil-mediated processes across different tissues and their varied microenvironments. Such work may provide important insights into the role of eosinophils not only under disease conditions but also in health. This narrative review synthesizes relevant publications retrieved from PubMed informed by author expertise to provide new insights into the diverse roles of eosinophils in health and disease, with particular emphasis on the implications for current and future development of eosinophil-targeted therapies.


Assuntos
Eosinofilia/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Fatores Biológicos/uso terapêutico , Pesquisa Biomédica , Proteínas Granulares de Eosinófilos/metabolismo , Humanos , Receptores de Superfície Celular/metabolismo , Doenças Respiratórias/metabolismo , Microambiente Tumoral , Viroses/imunologia
12.
Biomed Pharmacother ; 143: 112189, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560534

RESUMO

Exosomes are tiny membrane lipid bilayer vesicles (φ40-100 nm) formed by the fusion of multivesicular bodies with plasma membrane, which are released extracellular by exocytosis. As natural nanocarriers, exosomes contain a variety of signal substances of the mother cell: nucleic acids, proteins and lipids, etc., which always play a vital role in the transmission of signal molecules between different cells. Epithelial cells are the first-line defense system against various inhaled allergens causing chronic respiratory diseases (CRD), such as asthma and chronic obstructive pulmonary disease (COPD). It's noted that increasing literature shows the exosomes derived from epithelial cells are involved in the pathogenesis of CRD. Moreover, the correlations between exosome cargo and the disease phenotypes show a high potential of using exosomes as biomarkers of CRD. In this review, we mainly focus on the physiological functions of epithelial-derived exosomes and illustrate the involved mechanism of epithelial-derived exosomes in common CRD.


Assuntos
Células Epiteliais/metabolismo , Exossomos/metabolismo , Sistema Respiratório/metabolismo , Doenças Respiratórias/metabolismo , Remodelação das Vias Aéreas , Animais , Biomarcadores/metabolismo , Exossomos/transplante , Humanos , Valor Preditivo dos Testes , Prognóstico , Sistema Respiratório/fisiopatologia , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/terapia , Transdução de Sinais
14.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445113

RESUMO

Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Doenças Respiratórias/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
15.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445208

RESUMO

The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.


Assuntos
Temperatura Baixa , Canais de Cátion TRPM , Sensação Térmica , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , Humanos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/genética , Doenças Respiratórias/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Doenças Urológicas/tratamento farmacológico , Doenças Urológicas/genética , Doenças Urológicas/metabolismo
17.
Pharmacol Res ; 172: 105821, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403731

RESUMO

The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.


Assuntos
PPAR gama/metabolismo , Doenças Respiratórias/metabolismo , Animais , Infecções Bacterianas/metabolismo , Humanos , Viroses/metabolismo
18.
Biomolecules ; 11(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062820

RESUMO

Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Doenças Respiratórias/tratamento farmacológico , Sulfetos/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças Respiratórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia
19.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071807

RESUMO

Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.


Assuntos
Suscetibilidade a Doenças , Neuroimunomodulação , Doenças Respiratórias/etiologia , Doenças Respiratórias/metabolismo , Infecções Respiratórias/complicações , Animais , Doença Crônica , Diagnóstico Diferencial , Gerenciamento Clínico , Humanos , Doenças Respiratórias/diagnóstico , Infecções Respiratórias/etiologia
20.
J Cell Mol Med ; 25(12): 5341-5350, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942488

RESUMO

Sestrin2 (SESN2) is a conserved stress-inducible protein (also known as hypoxia-inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well-documented roles in hypoxia-related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia-related diseases, such as cancer, respiratory-related diseases, cardiovascular diseases and cerebrovascular diseases.


Assuntos
Doenças Cardiovasculares/patologia , Transtornos Cerebrovasculares/patologia , Hipóxia/fisiopatologia , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Peroxidases/metabolismo , Doenças Respiratórias/patologia , Animais , Doenças Cardiovasculares/metabolismo , Transtornos Cerebrovasculares/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo , Peroxidases/genética , Espécies Reativas de Oxigênio , Doenças Respiratórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...